Understanding the Complexities of Specifying LED Luminaires

It’s no longer a “Bulb in a Box”

It’s an LED TV on a Pole
Legacy Technology – Lamps and Ballasts

- All components are built and rated individually
- Components combined and thermal tests performed
 - Components do not exceed rated maximum temperature
 - Fixtures tested at 25°C Ambient standard
- Components generally function within specs if at or below rated temperature
- Components generally not affected by environmental conditions
 - Wet location is defined as critical components not wet, but moisture can be present in non-critical locations
- Lamps and Ballasts are normally replaced multiple times over the life of the installation independent of the fixture housing
Enter: LEDs, the NEW Bulb in a Box

- LEDs initially enter the market as light sources added to existing legacy technology housings:
 - Many fixtures failed in fairly short time periods
 - Many fixtures did not provide the promised lumen output
 - Fixture housings allowed moisture in, causing damage
 - Housing did not have appropriate heat sink needed to manage heat
 - Driver technology was not durable enough for long life
 - Legacy Engineering teams were not competent in DC Circuits
 - Electronics Manufacturers did not understand commercial lighting
 - Initially there were actually no UL standards for LEDs
Effects of Heat on LED Performance

- LEDs Light Output and Life are affected by heat:
 - Higher operating temperatures lower light output
 - Lumen depreciation rates increase with higher temperatures
 - Potential for catastrophic failures increase with increased temperature
 - Running temperatures (In-Situ) should be significantly lower than rated maximum for LED chip
 - Chip test data is NOT the same as fixture In-Situ temperature

Typical High Power LED TM-21 projected light output using LM-80 manufacturer test data
Effects of Heat on LED Performance

• Heat Management Engineered Solutions ARE the DIFFERENTIATOR
 – Housing design – Die cast aluminum thermal mass for dissipation
 – Heat transfer – LED -> Circuit Board -> Bonding to Heat Sink (housing)
 – LED Array board Aluminum core
 – Larger LED chip spacing allows for even heat distribution
 – Separate heat sink/compartment for driver to stop added heat to LEDs
 – IP67 Potted Driver has better heat dissipation
Effects of Heat on LED Performance

- LED Array and Electrical Circuitry Design affects operating temperatures
 - Optimum drive current for peak performance
 - Parallel circuits designed for balanced forward voltage at each LED
 - LED Array spacing improves heat dissipation

![Graph showing lumens vs. current](image)

Higher drive current produces more total lumens, but higher temperature with lower lumens/watt.

Array spacing directly affects LED temperature.
Basics of LED Fixture Design

• Heat Management – Factors combined and calculated
 – Luminaire is now a complete system using In-Situ Thermal Test to determine exact operating performance (Determined using IES TM-21 Energy Star Calculator)

• Fixture Enclosure – Combined heat sink and sealed environment
 – Balance heat management, needed options, sealed environment (IP Rating), mounting and serviceability

• Optical Control – The Differentiator in Delivered Light
 – Legacy reflector systems are now null and void
 – Single piece multiple optic, individual LED lens, or no lens options
 – Balanced forward voltage at each LED provides uniform brightness
Effects of LED In-Situ °C on the TM-21/L70

- TM-21 Inputs and Results – LED LM-80 6,000-10,000 Hour Temperature/Light output tests are input with the specific fixture In-Situ temperature

- LED Maximum Rated Temperature should not be used
- Rated maximum temperature will produce low Life Rating
- LEDicated fixtures outperform legacy housings
- Same chip with higher test temperature in a different fixture will have a lower L70 rating
Light Loss Factor (LLF)

- HID LLF is based on the lamp. LED LLF is based on calculated lumen depreciation FOR A SPECIFIC FIXTURE.
- Traditional LLFs cannot be applied to LED light sources.
- Fixtures designed specifically for LED sources (LEDicated fixtures) outperform legacy housings and HID.
- Higher Quality = Fewer Fixtures or Lower Luminaire Watts
Lumen Depreciation for LEDs vs. Legacy HID

- Metal Halide Initial = 24,000 Lumens
- Equivalent LED = 19,600 Lumens
- Consider LLF when comparing Lumen rating and use appropriate value when preparing calculations
- Optical control adds additional reduction – Compare actual delivered foot-candles
Recommended Fixture Specification Guidelines

- New Generation fixtures designed for LEDs have better performance
- Housing construction including reasonable heat sink
 - Plastic and sheet metal do not provide reasonable heat dissipation
 - LED Array/COB should be bonded to heat sink
 - Driver should have a designed heat sink
- Die cast or heavy extruded aluminum housings
 - For all fixtures over 50 watts and for all recessed luminaires
 - Recommended for all other if available
- Spacing between LEDs on arrays should be maximized, metal core boards provide better heat dissipation
Recommended Fixture Specification Guidelines

- L70 50,000 Hours developed 10 years ago – unacceptable today
 - Minimum L70 120,000 Hours for Arrays, L70 80,000 for COBs
- Published L70 Life ratings specific to the fixture for evaluation
- Listed Intrusion Protection Rating of at least IP65, IP66 preferred
- Robotically applied gaskets insures consistent production fixtures
- Select lower drive current, as higher drive currents typically increase heat on the LEDs (max 1100mA)
- When comparing fixtures run calculations for delivered light level
 - Consider delivered light levels rather than higher Lumens/Watt
- Reputable company with history of U.S. Market presence
Thank You for your Time

Please use the Contact form at www.qssi.com for any questions or inquiries.